

Session 5A

Method for Verifying Measurement Uncertainties Against Your Lab's ISO/IEC 17025 Scope of Accreditation

Michael L. Schwartz

Overview

- Problem: Uncertainty Calculations made by software don't match the SoA
- •Introduction to NCSLI 141 Committee
- Introduction to Metrology Taxonomy
- Introduction to SoA & Editor
- •How we solved this problem

Learning Objectives

- Know what a RESTful call is and how it can be used in metrology.
- How standardization solves business problems.
- What the NCSLI 141 Committee is working on.

About Cal Lab Solutions

- •Veteran owned business, ex-military metrologist
- Core business is **software**
 - Metrology consulting
 - Efficiencies through automation
 - Turn-key system

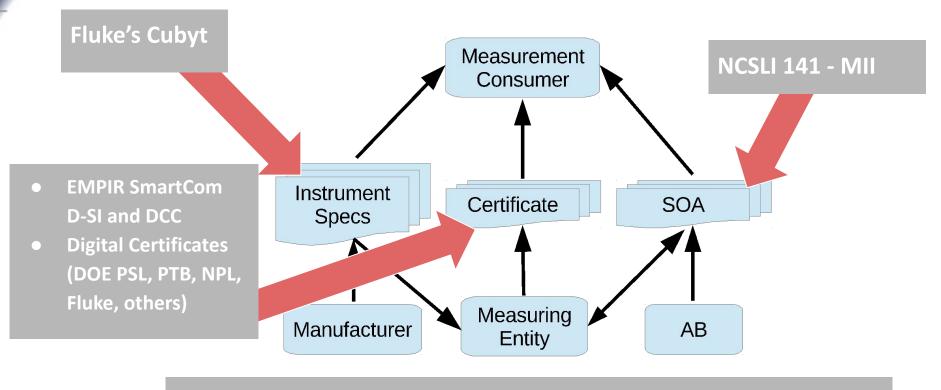
- Focus on finding the right solution for the customer
 - Created Metrology.NET[®] in 2015
 - World's largest **MET/CAL®** procedure library
 - **PS-Cal** power sensor calibration solution
 - **C#** web-based asset management system

•Acquired Cal Lab Magazine in 2011

Problem:

Often software will generate an uncertainty value that is lower than a calibration lab's Scope of Accreditation uncertainties.

NV

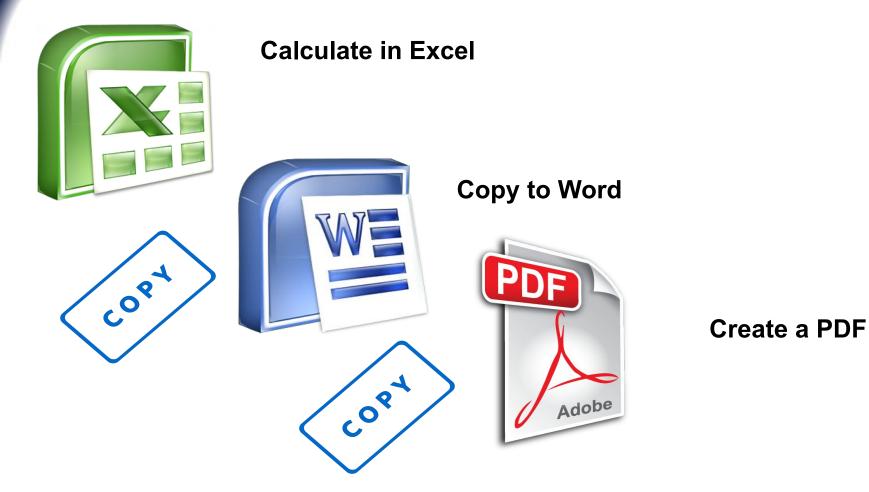

LA

TROLOGY.

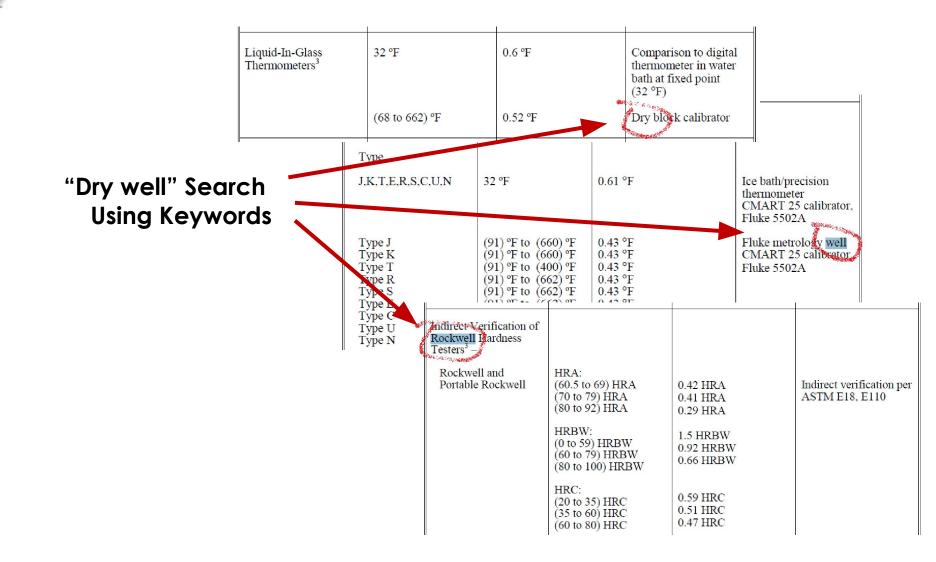
N7800/TME

SureCAL

NCSLI 141 Committee


- BIPM's KCDB, M-Layer
- European Metrology Cloud

- PTB's Digitization Strategy
- MSL, APMP, others


Digital Metrology Overview

Current Technology SoA

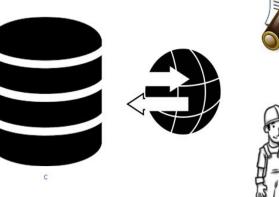
Current Technology

Current Technology SoA

Units of Measure are Ambiguous

Units of Measure aren't enough!

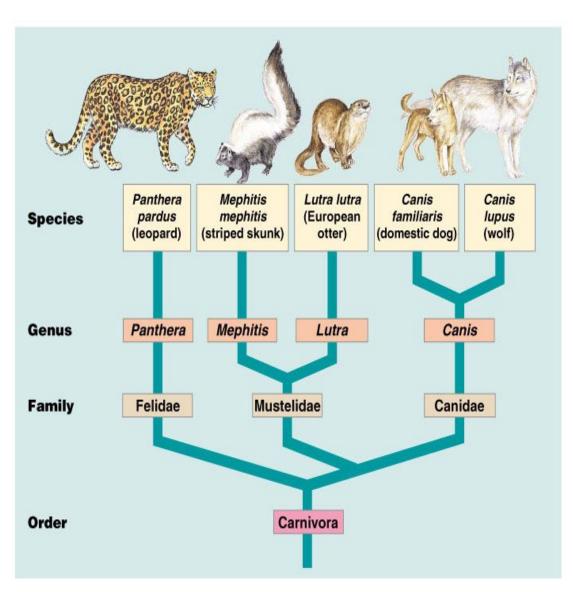
400 fpm 1.7 g 22 ° 101 Nm 98.5 %


Units are really about "Scale"

Scale or Count of a Quantity

We need Quantity Definitions

To Exchanges data between systems Convert between Scales



Metrology Taxonomy

Category Hierarchy

- 1) Source / Measure
- 2) Quantity Measured
- 3) Sub Category

Sub Category Sub Category

Metrology Taxonomy

Example for - Source.Voltage.AC.SineWave

The process of sourcing a sinusoidal AC Voltage signal from a device.

This can be used by any device that can generate AC Sinewave Voltage.

Required Parameters

- Volts Volts RMS
- Frequency Hz

Optional Parameters

- Impedance
- UUT.Range
- **UUT.Input** Input Name of the UUT Connecting Point

Measured Value & Uncertainty

• Volts

Parameter METADATA

Metadata is data about the data.

In Metrology.NET, parameters further define the specifics of a test point.

- Source.Voltage.Sinewave
 - Volts= 120 V
 - Frequency= 60 Hz
- Source.Voltage.Sinewave
 - Volts= 10 V
 - Frequency= 1 MHz
- Source.Voltage.Sinewave
 - Volts= 100 kV
 - Frequency= 60 Hz

Parameter METADATA

Metadata is data about the data.

By adding Metadata to an SoA it becomes easier to searcy

- Source.Voltage.Sinewave
 - Volts= 120 V
 - Frequency= 60 Hz

• Source.Voltage.Sinewave

- Volts= 10 V
- Frequency= 1 MHz

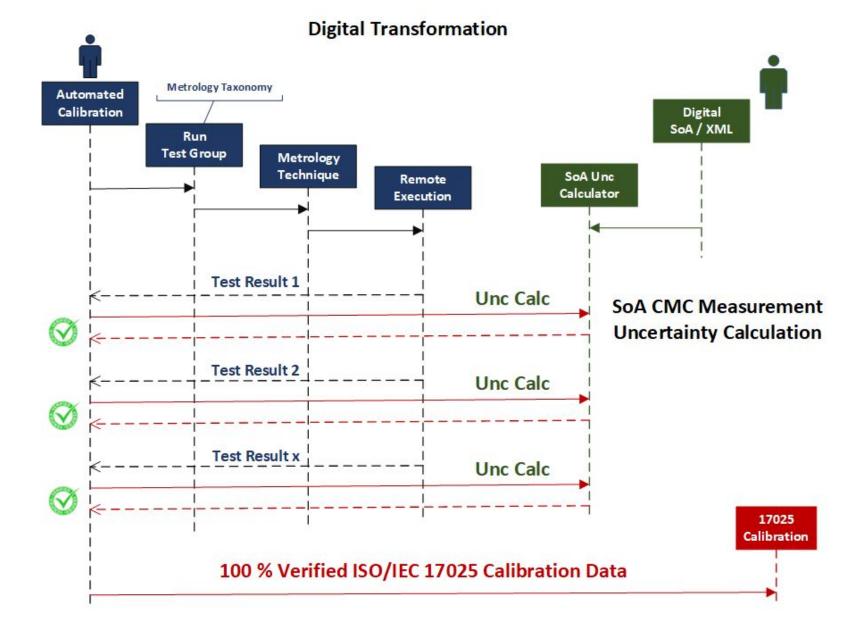
• Source.Voltage.Sinewave

- Volts= 100 kV
- Frequency= 60 Hz

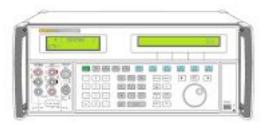
Electrical - DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard Method, and/or Equipment
DC Voltage – Source ¹	Up to 330 mV (0.3 to 3.3) V (3.3 to 33) V (33 to 330) V (330 to 1 000) V	$\frac{18 \text{ nV/mV} + 2.4 \mu\text{V}}{12 \mu\text{V/V} + 2.7 \mu\text{V}}$ $\frac{11 \mu\text{V/V} + 64 \mu\text{V}}{18 \mu\text{V/V} + 0.47 \text{ mV}}$ $\frac{21 \mu\text{V/V} + 4.7 \text{ mV}}{21 \mu\text{V/V} + 4.7 \text{ mV}}$	Fluke 5520A/SC1100 Multiproduct Calibrato
AC Voltage – Source ¹	(1 to 33) mV (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (31 to 330) mV (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (10 to 45) Hz 45 Hz to 10 kHz (10 to 45) Hz 45 Hz to 10 kHz (10 to 45) Hz (10 to 45) Hz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (10 to 45) Hz 45 Hz to 10 kHz (10 to 45) Hz (10 to 45) Hz (10 to 500) kHz (20 to 500) kHz (20 to 500) kHz (33 to 33) V (10 to 45) Hz 45 Hz to 10 kHz (20 to 500) kHz (33 to 330) V 45 Hz to 1 kHz (10 to 20) kHz (50 to 100) kHz (30 to 100) kHz (30 to 100) V 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (5 to 10) kHz	$\begin{array}{c} 0.88 \ \mu V/m V + 37 \ \mu V \\ 0.17 \ \mu V m V + 37 \ \mu V \\ 0.29 \ \mu V/m V + 37 \ \mu V \\ 1 \ \mu V/m V + 37 \ \mu V \\ 3.4 \ \mu V/m V + 36 \ \mu V \\ 3.4 \ \mu V/m V + 37 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 38 \ \mu V \\ 0.2 \ \mu V/m V + 20 \ \mu V \\ 0.1 \ \mu V/m V + 92 \ \mu V \\ 0.64 \ m V/V + 0.27 \ m V \\ 0.21 \ m V/V + 0.11 \ m V \\ 0.31 \ m V/V + 0.11 \ m V \\ 0.68 \ m V/V + 0.11 \ m V \\ 0.68 \ m V/V + 0.78 \ m V \\ 0.21 \ m V/V + 0.78 \ m V \\ 0.21 \ m V/V + 0.78 \ m V \\ 0.64 \ m V/V + 2.7 \ m V \\ 0.21 \ m V/V + 1.1 \ m V \\ 0.28 \ m V/V + 1.1 \ m V \\ 0.28 \ m V/V + 1.1 \ m V \\ 0.28 \ m V/V + 1.6 \ m V \\ 0.28 \ m V/V + 5.4 \ m V \\ 0.28 \ m V/V + 5.4 \ m V \\ 0.5 \ m V/V + 5.4 \ m V \\ 0.5 \ m V/V + 7.1 \ m V \\ 0.58 \ m V/V + 1.8 \ m V \\ 0.68 \ m V/V + 18 \ m V \\ 0.68 \ m V/V + 18 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V/V + 19 \ m V \\ 0.41 \ m V V + 19 \ m V \\ 0.41 \ m V V + 19 \ m V \\ 0.41 \ m V V + 19 \ m V \\ 0.41 \ m V V + 19 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V V + 10 \ m V \\ 0.41 \ m V \ m V \\ 0.41 \ m V V \ m V \\ 0.41 \ m V \ m V \\ 0.41 \ m V \ m V \ m V \\ 0.41 \ m V \ m V \ m V \\ 0.41 \ m V \ m$	Fluke 5520A/SC1100 Multiproduct Calibrate

Free SoA Editor


https://github.com/CalLabSolutions/Metrology.NET_Public

Company Info	-1			Cals-R-Us
 ▲ TestProcess.Measure.Voltage.DC ▲ Measure DCV All ▶ 200mV ▶ 2V ▶ 20V ▶ 200V ▶ 1000V 	Measure DC All Ranges: 5 Please selec		ng on any of the values.	Volts *(ppm_IV/1E+6) + Volts * (ppm_Range/1E+6) .15 *(4.5/1E+6) + .15 * (0.5/1E+6) Volts .15 Calculate 7.50E-007
	Range	Resolution	Volts	Constants
	200mV	8.5	-0.199999999 to 0.199999999	ppm_IV = 4.5 ppm_Range = 0.5
	2V	8.5	-1.99999999 to 1.99999999	ppm_IV = 3 ppm_Range = 0.2
	20V	8.5	-19.9999999 to 19.9999999	ppm_IV = 3 ppm_Range = 0.2
	200V	8.5	-199.999999 to 199.999999	ppm_IV = 4.5 ppm_Range = 0.2
	1000V	8.5	-1050 to 1050	ppm_IV = 4.5 ppm_Range = 0.5


SoA Editor /Calculator

Source.Voltage.Sinewave Volts= 120 V Formula \cap Frequency= 60 Hz Ο Volts * Scale + Floor 8.2E-2 or 0.082V $120 \pm 0.00064 \pm 0.0054$ Volts 120 Company Info 8.22E-002 Calculate Fluke 5520A Normal Output ▲ Source.Voltage.AC.Sinewave All Fluke 5520A Normal Output All Ranges: 31 VOILS * Scale + FIOOF 33 mV Please select a row by clicking on any of the values. 120 * 0.00064 + 0.0054 330 mV 3.3 V Volts 120 33 V 330 V 8.22E-002 Calculate 1000 V Source.Voltage.DC Volts Constants Range Frequency 1 20e3 to 50e3 3.3 to 33 Floor = 0.0011 33 V Scale = 0.00089 33 V 50e3 to 100e3 3.3 to 33 Floor = 0.0016Scale = 0.0022 45 to 1e3 330 V 33 to 330 Floor = 0.0054 Scale = 0.00064 330 V 1e3 to 10e3 33 to 330 Floor = 0.0088 Scale = 0.00028

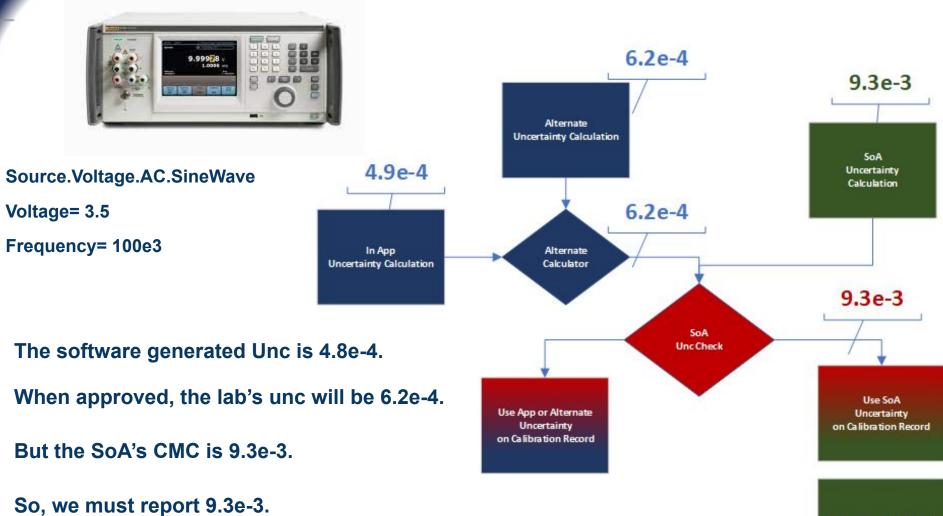
SoA Calculated Unc Check

Real World Example

"BestCal" has the Fluke 5520A on their ISO/IEC 17025/2017 Scope of Accreditation.

They bought a new Fluke 5730A with an accredited calibration.

They CAN'T report better than a 5520A.



Electrical - DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard Method, and/or Equipment
	Up to 330 mV	18 nV/mV + 2.4 µV	
DOUT ON I	(0.3 to 3.3) V	$12 \mu V/V + 2.7 \mu V$	Fluke 5520A/SC1100
DC Voltage - Source 1	(3.3 to 33) V	$11 \mu V/V + 64 \mu V$	Multiproduct Calibrato
	(33 to 330) V	$18 \mu V/V + 0.47 mV$	
	(330 to 1 000) V (1 to 33) mV	$21 \mu V/V + 4.7 mV$	
	(1 to 33) IIV (10 to 45) Hz	$0.88 \mu \text{V/mV} + 37 \mu \text{V}$	
	45 Hz to 10 kHz	$0.38 \mu V/mV + 37 \mu V$ 0.17 $\mu V/mV + 37 \mu V$	
	(10 to 20) kHz	$0.29 \mu V/mV + 37 \mu V$	
	(20 to 50) kHz	$1 \mu V/mV + 36 \mu V$	
	(50 to 100) kHz	$3.4 \mu V/mV + 33 \mu V$	
	(100 to 500) kHz	$8 \mu V/mV + 61 \mu V$	
	(33 to 330) mV	σμνπινισιμν	
	(10 to 45) Hz	$0.65 \mu V/mV + 51 \mu V$	
	45 Hz to 10 kHz	$0.2 \mu V/mV + 37 \mu V$	
	(10 to 20) kHz	$0.29 \mu V/mV + 38 \mu V$	
	(20 to 50) kHz	$0.7 \mu V/mV + 38 \mu V$	
	(50 to 100) kHz	$1.2 \mu V/mV + 50 \mu V$	
	(100 to 500) kHz	$2.1 \mu V/mV + 92 \mu V$	
	(0.33 to 3.3) V		
	(10 to 45) Hz	$0.64 \mathrm{mV/V} + 0.27 \mathrm{mV}$	
	45 Hz to 10 kHz	$0.21 \mathrm{mV/V} + 0.11 \mathrm{mV}$	
	(10 to 20) kHz	$0.31 \mathrm{mV/V} + 0.11 \mathrm{mV}$	T1 1 5520 1/0 01100
AC Voltage - Source 1	(20 to 50) kHz	$0.68 \mathrm{mV/V} + 0.11 \mathrm{mV}$	Fluke 5520A/SC1100
0	(50 to 100) kHz	1.1 mV/V + 0.17 mV	Multiproduct Calibrate
	(100 to 500) kHz	$2.5 \mathrm{mV/V} + 0.78 \mathrm{mV}$	
	(3.3 to 33) V		
	(10 to 45) Hz	$0.64 \mathrm{mV/V} + 2.7 \mathrm{mV}$	
	45 Hz to 10 kHz	0.21 mV/V + 1.1 mV	
	(10 to 20) kHz	0.41 mV/V + 1.1 mV	
	(20 to 50) kHz	0.89 mV/V + 1.1 mV	
	(50 to 100) kHz	$2.2 \mathrm{mV/V} + 1.6 \mathrm{mV}$	
	(33 to 330) V		
	45 Hz to 1 kHz	$0.64 \mathrm{mV/V} + 5.4 \mathrm{mV}$	
	(1 to 10) kHz	$0.28 \mathrm{mV/V} + 8.8 \mathrm{mV}$	
	(10 to 20) kHz	2.5 mV/V + 5 mV	
	(20 to 50) kHz	2.5 mV/V + 7.1 mV	
	(50 to 100) kHz	$4.5 \mathrm{mV/V} + 48 \mathrm{mV}$	
	(330 to 1 000) V	0.69 m 1/0/ + 19 m 1/	
	45 Hz to 1 kHz	0.68 mV/V + 18 mV	
	(1 to 5) kHz	0.38 mV/V + 19 mV	
	(5 to 10) kHz	0.41 mV/V + 19 mV	

SoA Calculated Unc Check

Note Calibration Record for Next Audit

Software in Action

Manual Entry Mode with Fluke 5520A Uncertainty Calculator

Metrology.N	et Test Packa	ges Work Orders	Uncertaintie	s Syst	em Data 👻 Adn	nin +				Cal I	ab Solutions	•
Work Order: 202	11001-1	Asset Number: O	DTS-0001	Se	rial Number:12	34567	Last Test Ran:	N/A			Work Order Parameters	
Test Package: Agi	lent 34401	Manufacturer: A	gilent	М	odel: 34401A o	otions	Collection Mo	de: As Found			Test Package Parameters	
Agent:		Status:		Run	Туре:		Assigned To:			Ca	libration Rep	ort
CLS_MICRO_07	~	Manual Calibratio	n Y	A	II Tests	~	Admin Admi	n 🗸		4		
Search:		Show/Hide Seque	nce									
	Group Nam	e	÷	Descri	otion	\$	Taxonomy			\$	Status	
♥ 🛪 🗄 😣 🭕	AC Volts Ve	rification		1 Year	Test Points		TestProcess.Sourc	e.Voltage.AC.Sine	ewave	•	2 of 12 Test	ed
Search:		Manual Entry	Mo Fluke 5	520A	¢Cł	eck 💿						_
Step 🌩	Description 🔶	Test Type 🌲	Nominal	\$	Lower Limit	Upper Limi	t Measured 🔷	Uncertainty 🗍	/	Status	Summa	ry 🔶
1	100mV Range	Within Limits <>	10.0 mV @1 k	(Hz	9.954	10.046				Not Test	ed	
1 🛞 2	100mV Range	Within Limits <>	100.0 mV @1	kHz	99.900	100.100				Not Teste	ed	
⊞ ⊗ 3	100mV Range	Within Limits <>	100.0 mV @5	0kHz	99.83	100.17				Not Test	ed	
≣ ⊗ 4	1V Range	Within Limits <>	1.0 V @1kHz		0.99991	1.00090				Not Teste	ed	

Software in Action

Green - The custom calculator's uncerty was equal to or greater than the SoA Grey - The custom calculator's uncertainty was lower than the SoA & REPLACED

>	🛪 📃 🛞 🌗 DC Volts Gain Verification					1	Year Test Points		Test	TestProcess.Source.Voltage.DC				
>	AC Volt			Volts Verification	s Verification			1 Year Test Points			TestProcess.Source.Voltage.AC.Sinewave			
earc	h:		Manual Entry Mode Fluke 5520A				\$							
_		Step	Description	🕴 Test Type 🛛 🔶	Nominal 🔶	Lower Limi	it Upper Limit	Measured	Uncertainty		Status 🔶	Summary		
iΞ	\otimes	1	100mV Rang	ge Within Limits <>	10.0 mV @1 kHz	9.954	10.046	10.000	38.70E-6	~	Passed	TUR 5.2 to 1. Confidence		
i≡	\otimes	2	100mV Rang	ge Within Limits <>	100.0 mV @1kHz	99.900	100.100	100.001	57.00E-6	~	Passed	TUR 3.7 to 1. Confidence		
Ξ	\otimes	3	100mV Rang	ge Within Limits <>	100.0 mV @50kHz	99.83	100.17	100.00	17.00E-5	~	Passed	TUR 3.7 to 1. Confidence		
Ξ	\otimes	4	1V Range	Within Limits <>	1.0 V @1kHz	0.99991	1.00090	1.00004	32.00E-5	~	Passed	TUR 2.0 to 1. Confidence		
Ξ	\otimes	5	1V Range	Within Limits <>	1.0 V @50kHz	0.9983 <mark>0</mark>	1.00170	1.00000	12.70E-4	1	Passed	TUR 4.7 to 1. Confidence		
:≡	⊗	6	10V Range	Within Limits <>	10.0 V @1kHz	9.9910	10.0090	10.0000	9.202E-2		Passed	TUR 0.1 to 1. Confidence		
E	\otimes	7	10V Range	Within Limits <>	10.0 V @50kHz	9.9830	10.0170	:			Not Tested			
E	⊗	8	10V Range	Within Limits <>	10.0 V @10Hz	9.9910	10.0090				Not Tested			
Ξ	\otimes	9	100V Range	Within Limits <>	100.0 V @1kHz	99.910	100.090				Not Tested			
E	⊗	10	100V Range	Within Limits <>	100.0 V @50kHz	<mark>99.83</mark> 0	100.170				Not Tested			
Ξ	\otimes	11	750V Range	Within Limits <>	750.0 V @1kHz	749.325	750.675				Not Tested			
:=	\otimes	12	750V Range	Within Limits <>	750.0 V @50kHz	748.725	751.275			1	Not Tested			

Software in Action

Green - The custom calculator's uncerty was equal to or greater than the SoA Grey - The custom calculator's uncertainty was lower than the SoA & REPLACED

>	🛪 📃 🛞 🌗 DC Volts Gain Verification					1	Year Test Points		Test	TestProcess.Source.Voltage.DC				
>	AC Volt			Volts Verification	s Verification			1 Year Test Points			TestProcess.Source.Voltage.AC.Sinewave			
earc	h:		Manual Entry Mode Fluke 5520A				\$							
_		Step	Description	🕴 Test Type 🛛 🔶	Nominal 🔶	Lower Limi	it Upper Limit	Measured	Uncertainty		Status 🔶	Summary		
iΞ	\otimes	1	100mV Rang	ge Within Limits <>	10.0 mV @1 kHz	9.954	10.046	10.000	38.70E-6	~	Passed	TUR 5.2 to 1. Confidence		
i≡	⊗	2	100mV Rang	ge Within Limits <>	100.0 mV @1kHz	99.900	100.100	100.001	57.00E-6	~	Passed	TUR 3.7 to 1. Confidence		
Ξ	\otimes	3	100mV Rang	ge Within Limits <>	100.0 mV @50kHz	99.83	100.17	100.00	17.00E-5	~	Passed	TUR 3.7 to 1. Confidence		
iΞ	\otimes	4	1V Range	Within Limits <>	1.0 V @1kHz	0.99991	1.00090	1.00004	32.00E-5	~	Passed	TUR 2.0 to 1. Confidence		
Ξ	\otimes	5	1V Range	Within Limits <>	1.0 V @50kHz	0.9983 <mark>0</mark>	1.00170	1.00000	12.70E-4	1	Passed	TUR 4.7 to 1. Confidence		
:≡	⊗	6	10V Range	Within Limits <>	10.0 V @1kHz	9.9 <mark>9</mark> 10	10.0090	10.0000	9.202E-2		Passed	TUR 0.1 to 1. Confidence		
E	\otimes	7	10V Range	Within Limits <>	10.0 V @50kHz	9.9830	10.0170	:			Not Tested			
E	⊗	8	10V Range	Within Limits <>	10.0 V @10Hz	9.9910	10.0090				Not Tested			
Ξ	\otimes	9	100V Range	Within Limits <>	100.0 V @1kHz	99.910	100.090				Not Tested			
E	⊗	10	100V Range	Within Limits <>	100.0 V @50kHz	<mark>99.83</mark> 0	100.170				Not Tested			
Ξ	\otimes	11	750V Range	Within Limits <>	750.0 V @1kHz	749.325	750.675				Not Tested			
:=	\otimes	12	750V Range	Within Limits <>	750.0 V @50kHz	748.725	751.275			1	Not Tested			

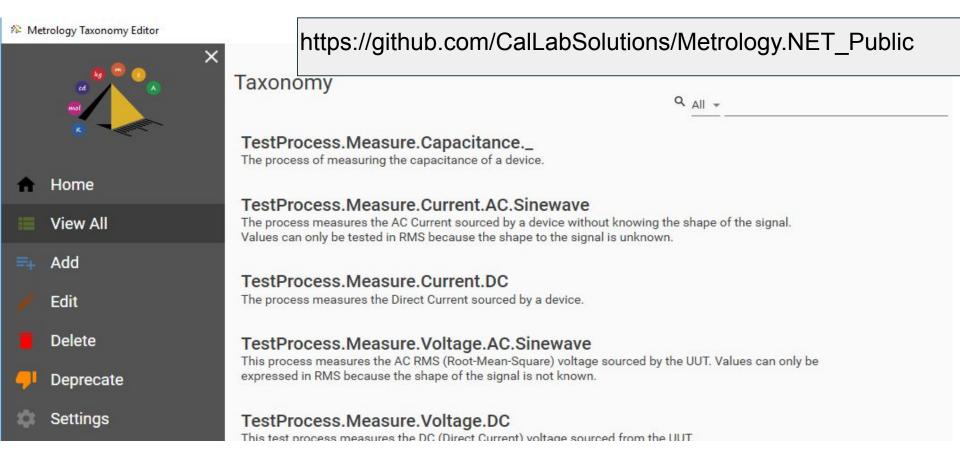
Questions? / Comments

Booth #118

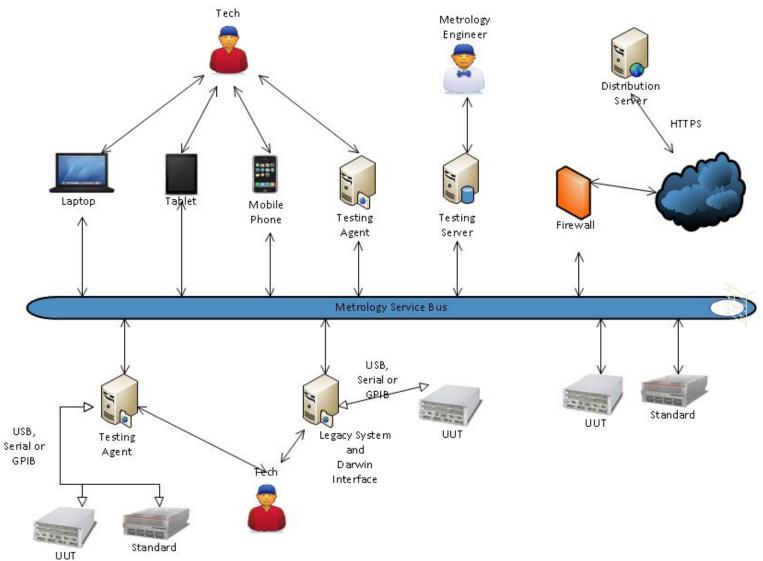
6D Panel Discussion 1:00 PM

Gatlin E1

Metrology's Digital Transformation


Michael L. Schwartz Cal Lab Solutions mschwartz@callabsolutions.com

Metrology Taxonomy


The NCLI 141 Committee meets weekly to discuss Metrology Taxonomies, M-Layer and other topics related to Digitizing Metrology

Mondays 2:00 pm Mountain Time

Gotomeeting ID 909-871-373

Changes in Test Equipment Interaction

